skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heacock, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Natural images depict real-world scenes such as landscapes, animals, and everyday items. Transformer-based detectors, such as the Detection Transformer, have demonstrated strong object detection performance on natural image datasets. These models are typically optimized through complex engineering strategies tailored to the characteristics of natural scenes. However, medical imaging presents unique challenges, such as high resolutions, smaller and fewer regions of interest, and subtle inter-class differences, which differ significantly from natural images. In this study, we evaluated the effectiveness of common design choices in transformer-based detectors when applied to medical imaging. Using two representative datasets, a mammography dataset and a chest CT dataset, we showed that common design choices proposed for natural images, including complex encoder architectures, multi-scale feature fusion, query initialization, and iterative bounding box refinement, fail to improve and can even be detrimental to the object detection performance. In contrast, simpler and shallower architectures often achieve equal or superior results with less computational cost. These findings highlight that standard design practices need to be reconsidered when adapting transformer models to medical imaging, and suggest that simplicity may be more effective than added complexity in this domain. Our model code and weights are publicly available at https://github.com/nyukat/Mammo-DETR 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract Deep neural networks (DNNs) show promise in image-based medical diagnosis, but cannot be fully trusted since they can fail for reasons unrelated to underlying pathology. Humans are less likely to make such superficial mistakes, since they use features that are grounded on medical science. It is therefore important to know whether DNNs use different features than humans. Towards this end, we propose a framework for comparing human and machine perception in medical diagnosis. We frame the comparison in terms of perturbation robustness, and mitigate Simpson’s paradox by performing a subgroup analysis. The framework is demonstrated with a case study in breast cancer screening, where we separately analyze microcalcifications and soft tissue lesions. While it is inconclusive whether humans and DNNs use different features to detect microcalcifications, we find that for soft tissue lesions, DNNs rely on high frequency components ignored by radiologists. Moreover, these features are located outside of the region of the images found most suspicious by radiologists. This difference between humans and machines was only visible through subgroup analysis, which highlights the importance of incorporating medical domain knowledge into the comparison. 
    more » « less
  3. null (Ed.)
  4. Abstract Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images, the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976 on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924 ± 0.02 radiologists). With the help of the AI, radiologists decrease their false positive rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis. 
    more » « less